Design Adaptive Nearest Neighbor Regression Estimation
نویسندگان
چکیده
منابع مشابه
Discriminant Adaptive Nearest Neighbor Classification and Regression
Robert Tibshirani Department of Statistics University of Toronto tibs@utstat .toronto.edu Nearest neighbor classification expects the class conditional probabilities to be locally constant, and suffers from bias in high dimensions We propose a locally adaptive form of nearest neighbor classification to try to finesse this curse of dimensionality. We use a local linear discriminant analysis to e...
متن کاملDimension Reduction in Regression Estimation with Nearest Neighbor
In regression with a high-dimensional predictor vector, dimension reduction methods aim at replacing the predictor by a lower dimensional version without loss of information on the regression. In this context, the so-called central mean subspace is the key of dimension reduction. The last two decades have seen the emergence of many methods to estimate the central mean subspace. In this paper, w...
متن کاملBayesian adaptive nearest neighbor
The k nearest neighbor classification (k-NN) is a very simple and popular method for classification. However, it suffers from a major drawback, it assumes constant local class posterior probability. It is also highly dependent on and sensitive to the choice of the number of neighbors k. In addition, it severely lacks the desired probabilistic formulation. In this article, we propose a Bayesian ...
متن کاملUnsupervised K-Nearest Neighbor Regression
In many scientific disciplines structures in highdimensional data have to be found, e.g., in stellar spectra, in genome data, or in face recognition tasks. In this work we present a novel approach to non-linear dimensionality reduction. It is based on fitting K-nearest neighbor regression to the unsupervised regression framework for learning of low-dimensional manifolds. Similar to related appr...
متن کاملFractional Regression Nearest Neighbor Imputation
Sample surveys typically gather information on a sample of units from a finite population and assign survey weights to the sampled units. Survey frequently have missing values for some variables for some units. Fractional regression imputation creates multiple values for each missing value by adding randomly selected empirical residuals to predicted values. Fractional imputation methods assign ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Multivariate Analysis
سال: 2000
ISSN: 0047-259X
DOI: 10.1006/jmva.2000.1901